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Overview

= We want to classify images containing apparatus found in chemical laboratories.
= Of particular interest are apparatus associated with the production of aerosols.

= We use deep neural networks trained on GPUs.
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Data Acquisition

= Wrote Python script to scour Google Images for keywords pertaining to objects of interest

= QOpens a web browser, forms the search URL, parses the resulting HTML

= Retrieves URLS corresponding to search results and automatically downloads images

= Downloaded ~ 9100 images across 15 object categories

= Had someone manually inspect the images, quickly removing those which are completely irrelevant

= Curated dataset: 5789 images

- q o]
b Lawrence Livermore National Laboratory N A .‘.“% 3

National Nuclear Security Administration




CNN Image Classifier

= Partitioned 5789 curated images into training/testing sets:
— 4746 for training (82%)
— 1043 for testing (18%)

= Trained four CNN architectures:
— ALEXNet
— GoogleNet
— ResNet-50
— VGG-16

= All models are fine-tuned from models pre-trained on ImageNet
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CNN Image Classifier

Training Images CNN Model Tuning
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CNN Architecture
ALEXNet 84%
GoogLeNet 90%
ResNet — 50 90%
VGG — 16 90%
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VGG-16 Confusion Matrix

Object 4 5 7 10| 11 | 12| 13| 14 | 15 Agclza?‘;z )
Images
lypholizer/dryer 1 86 74 1 0 4 0 4 0 0 0 1 0 0 2 0 0 805
nebulizer kit 2 77 0 73 0 0 1 0 1 0 0 1 0 0 1 0 0 94.81
ultracentrifuge 3 66 1 0 57 0 0 3 0 0 0 1 0 0 0 2 2 86.36
milling machine 4 116 0 0 0 111 0 0 0 0 0 0 0 0 1 2 2 95.69
condenser 5 51 0 1 0 0 46 1 0 0 2 0 0 0 0 1 0 90.20
rotary evaporator 6 65 2 0 1 1 5 54 0 0 0 0 1 0 0 1 0 83.08
biosafety suit 7 63 0 0 0 0 0 0 58 0 0 0 2 0 2 1 0 92.06
3-neck flask 8 50 0 1 0 0 2 0 0 45 2 0 0 0 0 0 0 90.00
add/sep funnel 9 42 0 2 0 0 3 0 2 1 34 0 0 0 0 0 0 80.95
magnetic stir plate 10 86 0 1 0 1 0 0 0 0 1 80 0 0 1 1 1 93.02
respirator 11 76 1 0 0 1 0 0 3 0 0 0 71 0 0 0 0 93.42
graduated cylinder 12 75 0 0 0 1 1 0 0 1 0 0 0 4l 0 1 0 94.67
biosafety cabinet 13 76 1 0 0 1 0 0 1 0 0 0 0 0 71 1 1 93.42
bioreactor/fermenter 14 77 5 1 0 0 0 1 0 0 0 1 0 2 2 64 1 83.12
DNA/RNA synthesizer 15 37 0 0 2 3 0 1 0 0 0 0 0 0 0 3 28 75.68
TOTAL 1043 90
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Interpretability of CNNs

= CNNs excel at object image classification, detection, segmentation, etc.

= Large parameter space makes intuitive interpretation difficult.

Meaningful integration of Al requires transparent models that can
explain why they predict what they predict

“ultracentrifuge” 0.92
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Gradient-based Class Activation Mapping

= Visual explanation technique that does not require modification/re-training of network
= Can be applied to any CNN-based task (i.e., image captioning, visual question answering)

= The last convolutional layers in a CNN learn semantic, class-specific information (i.e., object parts)

Convolution Fully connected
Al

>

LO (Input) L1 L2

Use the gradient flowing into last convolutional layer of CNN to
understand importance of each neuron for a prediction (classification)

Selvaraju et al., Grad-CAM: Visual Explanations from Deep Networks via Gradient-based Localization, arXiv:1610.02391, 2016.
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Guided Grad-CAM

Guided Backpropagation

Rectified Conv FC Layer
Feature Maps Activations

AR

Guided Grad-CAM

c | Tiger Cat
Backprop to last conv layer
Grad-CAM
y
global average pooling
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linear combination gradients via backprop

Selvaraju et al., Grad-CAM: Visual Explanations from Deep Networks via Gradient-based Localization, arXiv:1610.02391, 2016.
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Visualizations

Guided Grad-Cam Grad-Cam

ALEXNET
V' grad. cylinder: 100%
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Visualizations

Guided Grad-Cam Grad-Cam

ALEXNET
V' synthesizer: 100%
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Visualizations

Guided Grad-Cam Grad-Cam

ALEXNET
v ultracentrifuge: 100%

VGG-16
v ultracentrifuge: 100%
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Visualizations

GB Guided Grad-Cam Prediction

ALEXNET
x  Rotary evaporator
Score: 79.95%

VGG-16
v' Bioreactor/fermenter
Score: 94.30%
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Conclusion

= Trained CNN classifiers of chemical apparatus using open-source, web-scraped imagery,
= Obtained 90% classification rates on held-out test set containing ~1000 images.
= Used recent attention mechanism techniques for visualizing and interpreting model predictions.

= Future work to focus on more expansive, “wild” image sets and training detection models.
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