Deep Learning for Explainable Image Classification of Chemical Laboratory Apparatus

Dr. Wesam Sakla¹, Capt. Tyler Hough² ¹Lawrence Livermore National Laboratory (LLNL) ²Defense Threat Reduction Agency (DTRA)

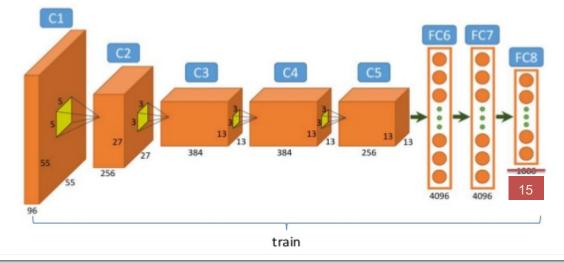
This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344. Lawrence Livermore National Security, LLC

Overview

- We want to classify images containing apparatus found in chemical laboratories.
- Of particular interest are apparatus associated with the production of aerosols.
- We use deep neural networks trained on GPUs.

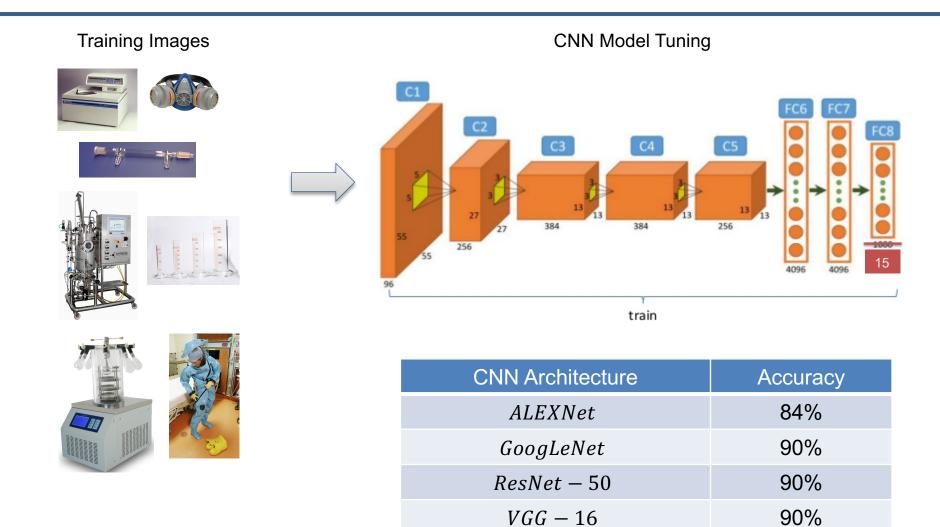
Data Acquisition

- Wrote Python script to scour Google Images for keywords pertaining to objects of interest
- Opens a web browser, forms the search URL, parses the resulting HTML
- Retrieves URLS corresponding to search results and automatically downloads images
- Downloaded ~ 9100 images across 15 object categories
- Had someone manually inspect the images, quickly removing those which are completely irrelevant
- Curated dataset: 5789 images


CNN Image Classifier

- Partitioned 5789 curated images into training/testing sets:
 - 4746 for training (82%)
 - 1043 for testing (18%)
- Trained four CNN architectures:
 - ALEXNet
 - GoogLeNet
 - ResNet-50
 - VGG-16
- All models are fine-tuned from models pre-trained on ImageNet

ImageNet Training Data

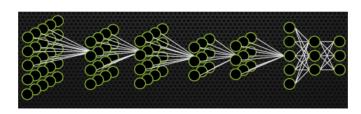


Train with 1.2 million labeled images

CNN Image Classifier

VGG-16 Confusion Matrix

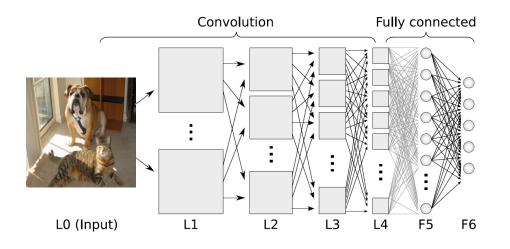
Object	Class	# Test Images	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	Class Acc. (%)
lypholizer/dryer	1	86	74	1	0	4	0	4	0	0	0	1	0	0	2	0	0	86.05
nebulizer kit	2	77	0	73	0	0	1	0	1	0	0	1	0	0	1	0	0	94.81
ultracentrifuge	3	66	1	0	57	0	0	3	0	0	0	1	0	0	0	2	2	86.36
milling machine	4	116	0	0	0	111	0	0	0	0	0	0	0	0	1	2	2	95.69
condenser	5	51	0	1	0	0	46	1	0	0	2	0	0	0	0	1	0	90.20
rotary evaporator	6	65	2	0	1	1	5	54	0	0	0	0	1	0	0	1	0	83.08
biosafety suit	7	63	0	0	0	0	0	0	58	0	0	0	2	0	2	1	0	92.06
3-neck flask	8	50	0	1	0	0	2	0	0	45	2	0	0	0	0	0	0	90.00
add/sep funnel	9	42	0	2	0	0	3	0	2	1	34	0	0	0	0	0	0	80.95
magnetic stir plate	10	86	0	1	0	1	0	0	0	0	1	80	0	0	1	1	1	93.02
respirator	11	76	1	0	0	1	0	0	3	0	0	0	71	0	0	0	0	93.42
graduated cylinder	12	75	0	0	0	1	1	0	0	1	0	0	0	71	0	1	0	94.67
biosafety cabinet	13	76	1	0	0	1	0	0	1	0	0	0	0	0	71	1	1	93.42
bioreactor/fermenter	14	77	5	1	0	0	0	1	0	0	0	1	0	2	2	64	1	83.12
DNA/RNA synthesizer	15	37	0	0	2	3	0	1	0	0	0	0	0	0	0	3	28	75.68
TOTAL		1043																90



Interpretability of CNNs

- CNNs excel at object image classification, detection, segmentation, etc.
- Large parameter space makes intuitive interpretation difficult.

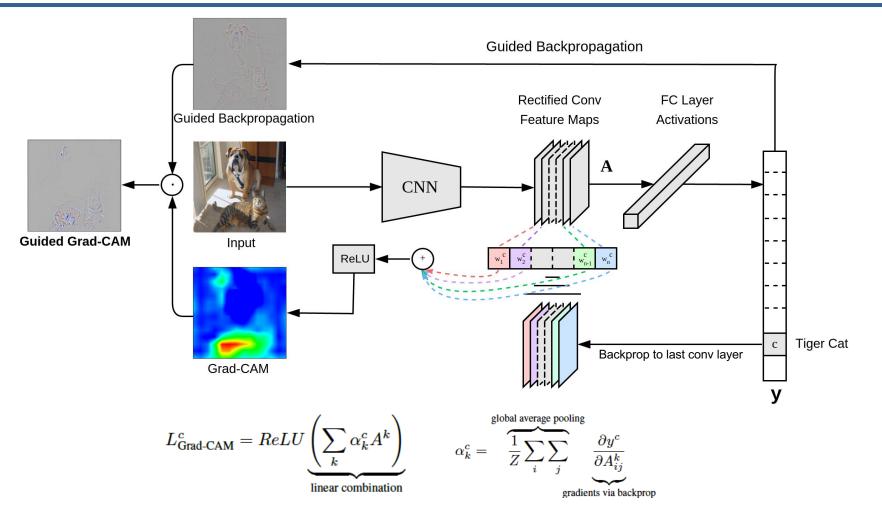
Meaningful integration of AI requires transparent models that can explain why they predict what they predict



"ultracentrifuge": 0.92

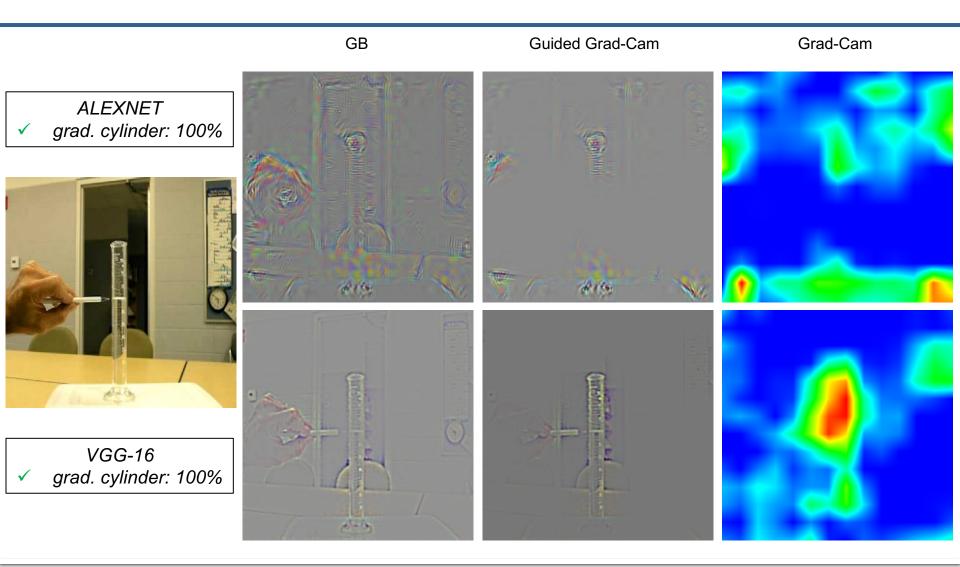
Gradient-based Class Activation Mapping

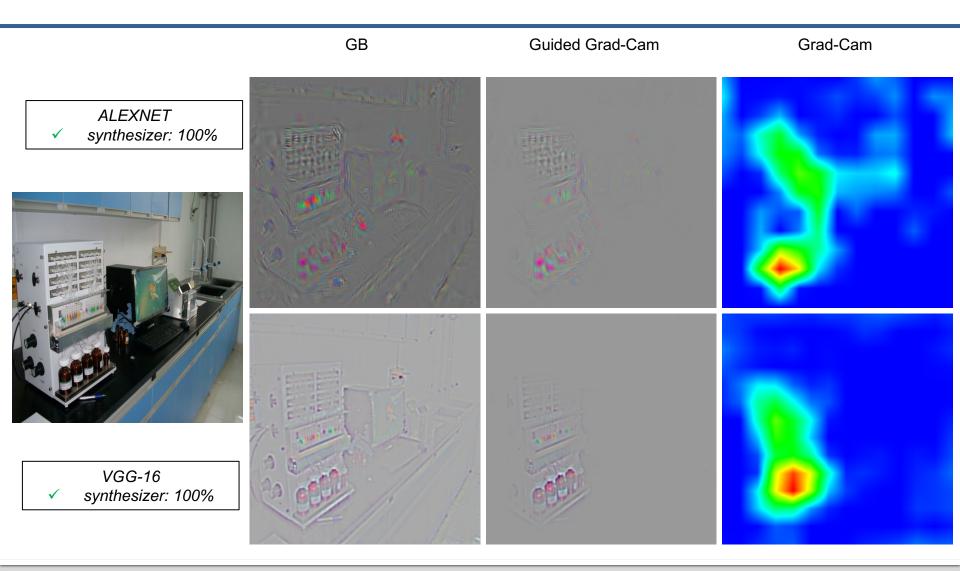
- Visual explanation technique that does not require modification/re-training of network
- Can be applied to any CNN-based task (i.e., image captioning, visual question answering)
- The last convolutional layers in a CNN learn semantic, class-specific information (i.e., object parts)

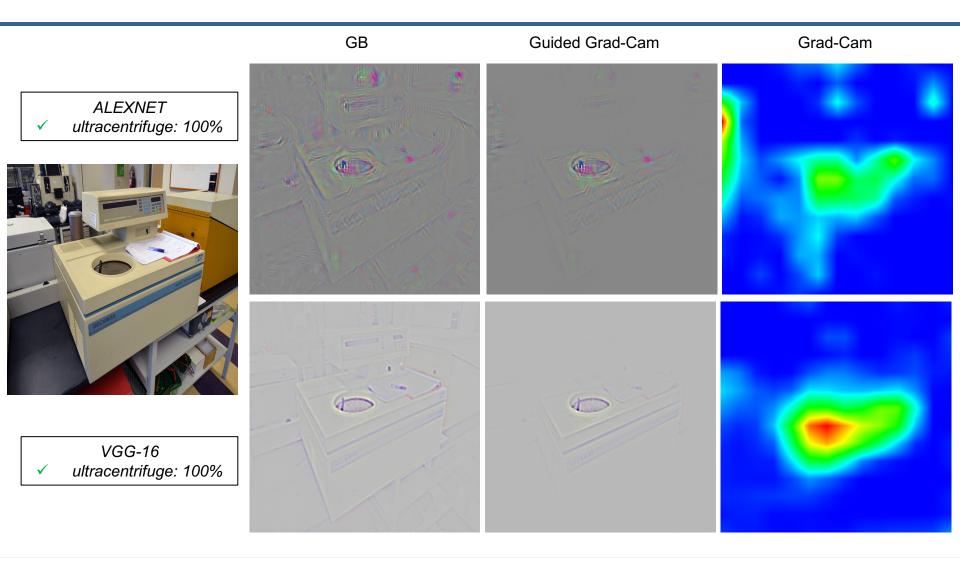


Use the gradient flowing into last convolutional layer of CNN to understand importance of each neuron for a prediction (classification)

Selvaraju et al., Grad-CAM: Visual Explanations from Deep Networks via Gradient-based Localization, arXiv:1610.02391, 2016.


Guided Grad-CAM


Selvaraju et al., Grad-CAM: Visual Explanations from Deep Networks via Gradient-based Localization, arXiv:1610.02391, 2016.





Lawrence Livermore National Laboratory

Conclusion

- Trained CNN classifiers of chemical apparatus using open-source, web-scraped imagery,
- Obtained 90% classification rates on held-out test set containing ~1000 images.
- Used recent attention mechanism techniques for visualizing and interpreting model predictions.
- Future work to focus on more expansive, "wild" image sets and training detection models.

